Приближённое решение - définition. Qu'est-ce que Приближённое решение
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Приближённое решение - définition

ПОСТАНОВЛЕНИЕ СУДА, КОТОРЫМ ДЕЛО РАЗРЕШАЕТСЯ ПО СУЩЕСТВУ
Решение судебное; Решение (право); Решение суда; Вердикт суда; Юридическое решение

Приближённое решение      

дифференциальных уравнений, получение аналитических выражений (формул) или численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения.

П. р. дифференциальных уравнений в виде аналитического выражения может быть найдено методом рядов (степенных, тригонометрических и др.), методом малого параметра, последовательных приближений методом (См. Последовательных приближении метод), Ритца и Галёркина методами (См. Ритца и Галёркина методы), Чаплыгина методом. Каждый из этих методов определяет один или несколько бесконечных процессов, с помощью которых при выполнении определённых условий можно получить точное решение задачи. Для получения П. р. останавливаются на некотором шаге процесса.

Если решение ищется в виде бесконечного ряда, то за П. р. принимают конечный отрезок ряда. Например, пусть требуется найти решение дифференциального уравнения y' = f (x, у), удовлетворяющее начальным условиям у (х0) = y0, причём известно, что f (x, у) - аналитическая функция х, у в некоторой окрестности точки (х0, y0). Тогда решение можно искать в виде степенного ряда:

y (x) - y (x0) = .

Коэффициенты Ak ряда могут быть найдены либо по формулам:

A1 = y'0 = f (x0, y0);

либо с помощью неопределенных коэффициентов метода (См. Неопределённых коэффициентов метод). Метод рядов позволяет находить решение лишь при малых значениях величины х - х0.

Часто (например, при изучении периодических движений в небесной механике и теории колебаний) встречается случай, когда уравнение состоит из членов двоякого вида: главных и второстепенных, причём второстепенные члены характеризуются наличием в них малых постоянных множителей. Обычно после отбрасывания второстепенных членов получается уравнение, допускающее точное решение. Тогда решение основного уравнения можно искать в виде ряда, первым членом которого является решение уравнения без второстепенных членов, а остальные члены ряда расположены по степеням малых постоянных величин, входящих во второстепенные члены (малых параметров). При этом уравнения для коэффициентов при степенях малых параметров линейны, что облегчает их решение. В роли малого параметра иногда выступают начальные значения (например, при изучении колебаний около положения равновесия). Метод малого параметра был использован при решении задачи о возмущённом движении в небесной механике Л. Эйлером и П. Лапласом. Теоретическое обоснование этого метода дали А. М. Ляпунов и А. Пуанкаре.

К численным методам относятся методы, позволяющие находить П. р. при некоторых значениях аргумента (т. е. получать таблицу приближённых значений искомого решения), пользуясь известными значениями решения в одной или нескольких точках. Такими методами являются, например, метод Эйлера, метод Рунге и целый ряд разностных методов.

Поясним эти методы на примере уравнения

y'' = f (x, у)

с начальным условием у (х0) = y0. Пусть точное решение этого уравнения представлено в некоторой окрестности точки х0 в виде ряда по степеням h = х - х0 Основной характеристикой точности формул П. р. дифференциальных уравнений является требование, чтобы первые k членов разложения в ряд по степеням h П. р. совпадали с первыми k членами разложения в ряд по степеням h точного решения.

Основная идея метода Эйлера заключается в применении метода рядов для вычисления приближённых значений решения у (х) в точках x1, x2,..., xn некоторого фиксированного отрезка [х0, b] Так, для того чтобы вычислить у (х1), где х1 = х0 + h, h = (b - x0)/n, представляют у (х1) в виде конечного числа членов ряда по степеням h = х1 - х0. Например, ограничиваясь первыми двумя членами ряда, получают для вычисления у (xk) формулы:

,

Это т. н. метод ломаных Эйлера (на каждом отрезке [xk, xk+1] интегральная кривая заменяется прямолинейным отрезком - звеном ломаной Эйлера). Погрешность метода пропорциональна h2.

В методе Рунге вместо того, чтобы отыскивать производные, находят такую комбинацию значений f (x, у) в некоторых точках, которая даёт с определённой точностью несколько первых членов степенного ряда для точного решения уравнения. Например, правая часть формулы Рунге:

,

где

;

;

;

дает первые пять членов степенного ряда с точностью до величин порядка h5.

В разностных формулах П. р. удаётся несколько раз использовать уже вычисленные значения правой части. Решение ищется в виде линейной комбинации у (xi), ηi и разностей Δiηj, где

ηj = hf (xj, yj); Δηj = ηj+1 - ηj;

Δiηj = Δi-1ηj+1 - Δi-1ηj.

Примером разностной формулы П. р. является экстраполяционная формула Адамса. Так, формула Адамса, учитывающая "разности" 3-го порядка:

даёт решение у (х) в точке xk с точностью до величин порядка h4.

Для уравнений 2-го порядка можно получить формулы численного интегрирования путём двукратного применения

----------------------------------------------------------------------------------------------------------------------------------------

| Формула | k = 2 | k = 3 | k = 4 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| (1 + x)3 1 + 3x | 0,04 | 0,012 | 0,004 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,06 | 0,022 | 0,007 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,19 | 0,062 | 0,020 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,20 | 0,065 | 0,021 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,31 (17°48') | 0,144 (8°15') | 0,067 (3°50') |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,10 (5°43') | 0,031 (l'48') | 0,010 (0°34') |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,25 (14°8') | 0,112 (6°25') | 0,053 (3°2') |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,14 | 0,47 | 0,015 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,04 | 0,014 | 0,004 |

|--------------------------------------------------------------------------------------------------------------------------------------|

| | 0,25 | 0,119 | 0,055 |

----------------------------------------------------------------------------------------------------------------------------------------

формулы Адамса. Норвежский математик К. Стёрмер получил формулу:

особенно удобную для решения уравнений вида у'' = f (x, у). По этой формуле находят Δ2yn-1, а затем yn+1 = ynyn+1 + Δ2yn-1. Найдя yn+1, вычисляют y''n+1 = f (xn+1, yn+1), находят разности и повторяют процесс далее.

Указанные выше численные методы распространяются и на системы дифференциальных уравнений.

Значение численных методов решения дифференциальных уравнений особенно возросло с распространением ЭВМ.

Кроме аналитических и численных методов, для П. р. дифференциальных уравнений применяются графические методы. В простейшем из них строят поле направлений, определяемое дифференциальным уравнением, т. е. в некоторых точках рисуют направления касательной к интегральной кривой, проходящей через эту точку. Затем проводят кривую так, чтобы касательные к ней имели направления поля (см. Графические вычисления).

Лит.: Березин И. С., Жидков Н. П., Методы вычислений, 2 изд., т. 2, М.. 1962; Бахвалов Н. С., Численные методы, М., 1973: Коллатц Л., Численные методы решения дифференциальных уравнений, пер. с нем., М., 1953; Милн В. Э., Численное решение дифференциальных уравнений, пер, с англ., М., 1955.

Архитектурное решение         
ЧАСТЬ ПРОЕКТНОЙ РАБОТЫ ПО СОЗДАНИЮ ДОКУМЕНТАЦИИ ДЛЯ ПРОИЗВОДСТВА СТРОИТЕЛЬНЫХ РАБОТ
Архитектурные решения; Архитектурно-художественное решение; Архитектурно-планировочное решение; Функционально-планировочное решение; Объёмно-планировочное решение; Объёмно-пространственное решение; Архитектурно-композиционное решение; Объемно-планировочное решение; Объемно-пространственное решение
Архитекту́рное реше́ние (архитектурные решения, АР) — часть проектной работы, направленной на создание документации для производства строительных работ.
Решение задач         
ПРОЦЕСС ВЫПОЛНЕНИЯ ОБЩИХ МЕСТНЫХ ИЛИ МЕСТНЫХ ДЕЙСТВИЙ, НАПРАВЛЕННЫЙ НА РЕШЕНИЕ ПРОБЛЕМ
Решение проблем
Реше́ние зада́ч — выполнение действий или мыслительных операций, направленных на достижение цели, заданной в рамках проблемной ситуации — задачи. Является составной частью мышления.

Wikipédia

Судебное решение

Судебное решение — постановление суда первой инстанции, которым дело разрешается по существу. Решение суда принимается в совещательной комнате.

Судебное решение традиционно принято рассматривать в двух значениях:

  1. действия суда для завершения судебного разбирательства и подведения итогов;
  2. документ судебной инстанции, содержащий результат разрешения спора по существу.

В Российской Федерации законодательное определение понятия «судебное решение» закреплено:

  1. в Гражданском процессуальном кодексе РФ как «постановление суда первой инстанции, которым дело разрешается по существу»;
  2. в Арбитражном процессуальном кодексе РФ как «судебный акт, принимаемый при рассмотрении дела по существу арбитражным судом первой инстанции».

В уголовном производстве аналогом решения выступает приговор — постановление о невиновности или виновности подсудимого, вынесенное судами первой и апелляционной инстанции.

Помимо судебных решений, суд также издаёт определения и судебные приказы.

Определение об утверждении мирового соглашения по юридической силе не уступает решению.